Hi there, I want to share some thoughts and want to hear your opinions on it.

Recently, AI developments are booming also in the sense of game development. E.g. NVIDIA ACE which would bring the possibility of NPCs which run an AI model to communicate with players. Also, there are developments on an alternative to ray tracing where lighting, shadows and reflections are generated using AI which would need less performance and has similar visual aesthetics as ray tracing.

So it seems like raster performance is already at a pretty decent level. And graphic card manufacturers are already putting increasingly AI processors on the graphics card.

In my eyes, the next logical step would be to separate the work of the graphics card, which would be rasterisation and ray tracing, from AI. Resulting in maybe a new kind of PCIe card, an AI accelerator, which would feature a processor optimized for parallel processing and high data throughput.

This would allow developers to run more advanced AI models on the consumer’s pc. For compatibility, they could e.g. offer a cloud based subscription system.

So what are your thoughts on this?

  • Qazwsxedcrfv000@lemmy.unknownsys.com
    link
    fedilink
    English
    arrow-up
    4
    ·
    1 year ago

    Your GPU is an AI accelerator already. Running trained AI models is not as resource demanding as training one. Unless local training becomes universal, AI acclerators for consumers make very few sense.

  • colournoun@beehaw.org
    link
    fedilink
    English
    arrow-up
    2
    ·
    1 year ago

    Unless the AI processing is much more specialized than graphics, I think manufacturers would put that effort into making more powerful GPUs that can also be used for AI tasks.

    • TheTrueLinuxDev@beehaw.org
      link
      fedilink
      English
      arrow-up
      2
      ·
      1 year ago

      They would try to alleviate the cost on running GPU by making an AI accelerator chip like Tensor Core, but it’ll get bottleneck by limited VRAM when Neural Net models require steep amount of memory. it’s more productive to have something like NPU that runs either on RAM or by it’s own memory chips offering higher amount of capacity to run such neural net and avoid the roundtrip data copying between GPU and CPU.

    • GreyBeard@lemmy.one
      link
      fedilink
      English
      arrow-up
      1
      ·
      1 year ago

      We saw this happen a long time ago with PPUs. Physics Processing Units. They came around for a couple of years, then the graphics cards manufacturers integrated the PPU into the GPU and destroyed any market for PPUs.

    • Port8080@feddit.deOP
      link
      fedilink
      English
      arrow-up
      1
      ·
      1 year ago

      Two very interesting articles. Thank you for that!

      Especially the analog processor is a game changer with having the computation directly in memory. Generally, analog computers are a very interesting subject!

  • averyminya@beehaw.org
    link
    fedilink
    English
    arrow-up
    1
    ·
    1 year ago

    Look into what Mystic AI was doing. It’s effectively what you were talking about but based in reality :)

  • maynarkh@feddit.nl
    link
    fedilink
    English
    arrow-up
    1
    ·
    1 year ago

    Good question, but I’d say that the same train of thought went through dedicated physics cards. I’d guess that an AI card should have a great value proposition to be worth buying.

    For compatibility, they could e.g. offer a cloud based subscription system.

    I’m not sure where you’re going with this, but it feels wrong. I’m not buying a hardware part that cannot function without a constant internet connection or regular payment.